Last updated 1/2023
Created by Raj Chhabria
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 34 Lectures ( 4h 15m ) | Size: 1.44 GB
Learn about Complete Life Cycle of a Deep Learning Project. Implement different Neural networks using Tensorflow & Keras
What you'll learn
You will learn the complete life cycle of a Data Science Project with Machine Learning and Deep Learning.
Learn about different Neural Networks like ANN, CNN and RNN.
Learn about pandas, numpy, matplotlib, sklearn, tensorflow that are some of the most important python libraries used in Data Science, ML and DL.
You will build practical projects like Gold Price Prediction, Image Class Prediction and Stock Price Prediction using different Neural networks.
Requirements
Basic understanding of Python Programming Language.
Description
Deep learning is a subfield of machine learning that is focused on building neural networks with many layers, known as deep neural networks. These networks are typically composed of multiple layers of interconnected "neurons" or "units", which are simple mathematical functions that process information. The layers in a deep neural network are organized in a hierarchical manner, with lower layers processing basic features and higher layers combining these features to represent more abstract concepts.Deep learning models are trained using large amounts of data and powerful computational resources, such as graphics processing units (GPUs). Training deep learning models can be computationally intensive, but the models can achieve state-of-the-art performance on a wide range of tasks, including image classification, natural language processing, speech recognition, and many others.There are different types of deep learning models, such as feedforward neural networks, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and many more. Each type of model is suited for a different type of problem, and the choice of model will depend on the specific task and the type of data that is available.IN THIS COURSE YOU WILL LEARN :Complete Life Cycle of Data Science Project.Important Data Science Libraries like Pandas, Numpy, Matplotlib, Seaborn, sklearn etc...How to choose appropriate Machine Learning or Deep Learning Model for your projectMachine Learning Fundamentals Regression and Classification in Machine LearningArtificial Neural Networks (ANN)Convolutional Neural Networks (CNN)Recurrent Neural Networks (RNN)Tensorflow and KerasDifferent projects like Gold Price Prediction, Stock Price Prediction, Image Classification etc...ALL THE BEST !!!
Who this course is for
Anyone who wants to get started with Deep Learning.
Data Science and ML folks who want to learn about Neural Networks and Deep Learning.
Homepage
https://www.udemy.com/course/deep-learning-masterclass/
Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
Fikper
enjfb.Deep.Learning.MasterClass.2023.part1.rar.html
enjfb.Deep.Learning.MasterClass.2023.part2.rar.html
Rapidgator
enjfb.Deep.Learning.MasterClass.2023.part1.rar.html
enjfb.Deep.Learning.MasterClass.2023.part2.rar.html
Uploadgig
enjfb.Deep.Learning.MasterClass.2023.part1.rar
enjfb.Deep.Learning.MasterClass.2023.part2.rar
NitroFlare
enjfb.Deep.Learning.MasterClass.2023.part1.rar
enjfb.Deep.Learning.MasterClass.2023.part2.rar
Views: 8 Comments (0)
free Deep Learning MasterClass (2023), Downloads Deep Learning MasterClass (2023), RapidShare Deep Learning MasterClass (2023), Megaupload Deep Learning MasterClass (2023), Mediafire Deep Learning MasterClass (2023), DepositFiles Deep Learning MasterClass (2023), HotFile Deep Learning MasterClass (2023), Uploading Deep Learning MasterClass (2023), Easy-Share Deep Learning MasterClass (2023), FileFactory Deep Learning MasterClass (2023), Vip-File Deep Learning MasterClass (2023), Shared Deep Learning MasterClass (2023), Please feel free to post your Deep Learning MasterClass (2023) Download, Movie, Game, Software, Mp3, video, subtitle, sample, torrent, NFO, Crack, uploaded, putlocker, Rapidgator, mediafire, Netload, Zippyshare, Extabit, 4shared, Serial, keygen, Watch online, requirements or whatever-related comments here.
Related Downloads :
{related-news}